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Abstract
Generalized coherent states for shape-invariant potentials are constructed using
an algebraic approach based on supersymmetric quantum mechanics. We show
that this generalized formalism is able to (a) supply the essential requirements
necessary to establish a connection between classical and quantum formulations
of a given system (continuity of labelling, resolution of unity, temporal stability
and action identity), (b) reproduce results already known for shape-invariant
systems, such as harmonic oscillator, double anharmonic, Pöschl–Teller and
self-similar potentials, and (c) point to a formalism that provides a unified
description of the different kind of coherent states for quantum systems.

PACS number: 03.65.Fd

1. Introduction

Coherent states were first introduced by Schrödinger [1], who was interested in finding
quantum-mechanical states which provide a close connection between quantum and classical
formulations of a given physical system. Based on the Heisenberg–Weyl group and applied
specifically to the harmonic oscillator system, the original coherent state introduced by
Schrödinger has been extended to a large number of Lie groups with square integrable
representations [2, 3]. Today these extensions represent many applications in a number of
fields of quantum theory, and especially in quantum optics and radiophysics. In particular they
are used as bases of coherent state path integrals [4] or dynamical wavepackets for describing
the quantum systems in semi-classical approximations [5]. There are different definitions of
coherent states. The first one, often called Barut–Girardello coherent states [6], assumes that
the coherent states are eigenstates with complex eigenvalues of an annihilation group operator.
The second definition, often called Perelomov coherent states [7], assumes the existence of
a unitary z-displacement operator whose action on the ground state of the system gives the
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coherent state parametrized by z, with z ∈ C. The last definition, based on the Heisenberg
uncertainty relation, often called intelligent coherent states [8], assumes that the coherent
state gives the minimum-uncertainty value �x�p = h̄

2 , and maintains this relation in time
because of its temporal stability. These three different definitions are equivalent only in the
special case of the Heisenberg–Weyl group, the dynamical symmetry group of the harmonic
oscillator.

The extension of coherent states for systems other than the harmonic oscillator has
attracted much attention for the past several years [9–15]. There are a large number of
different approaches to this problem and the one to be presented here is based on the
supersymmetric quantum mechanics. Supersymmetric quantum mechanics [16] deals with
pairs of Hamiltonians which have the same energy spectra, but different eigenstates. A
number of such pairs of Hamiltonians share an integrability condition called shape invariance
[17]. Although not all exactly-solvable problems are shape-invariant [18], shape invariance,
especially in its algebraic formulation [19, 20], is a powerful technique to study exactly-
solvable systems.

Supersymmetric quantum mechanics is generally studied in the context of one-
dimensional systems. The partner Hamiltonians

Ĥ 1 = − h̄2

2m

d2

dx2
+ V−(x) = h̄�Â†Â and Ĥ 2 = − h̄2

2m

d2

dx2
+ V+(x) = h̄�ÂÂ†

(1.1)

are most readily written in terms of one-dimensional operators

Â ≡ 1√
h̄�

(
W(x) +

i√
2m

p̂

)
and Â† ≡ 1√

h̄�

(
W(x) − i√

2m
p̂

)
(1.2)

where h̄� is a constant energy scale factor, introduced to permit working with dimensionless
quantities, and W(x) is the superpotential which is related to the potentials V±(x) via

V±(x) = W 2(x) ± h̄√
2m

dW(x)

dx
. (1.3)

In earlier papers, by using an algebraic approach, we introduced coherent states for
self-similar potentials [13] and a class of shape-invariant systems and presented a possible
generalization of these coherent states and its relation with Ramanujan’s integrals [14]. In the
present paper we extend this generalized formalism to all shape-invariant systems and show
that the generalized coherent states then obtained satisfy the essential requirements necessary
to provide the basic principles [21] embodied in Schrödinger’s original idea. This paper is
organized as follows. In section 2 we present the algebraic formulation of shape invariance
and introduce the fundamental principles of our generalized coherent states and their basic
properties; in section 3 we apply our general formalism to shape-invariant systems classified
using the factorization method introduced by Infeld and Hull [22] and work out some possible
examples of coherent states for these systems. Finally, brief remarks close the paper in
section 4.

2. Generalized coherent states for shape-invariant systems

The Hamiltonian Ĥ 1 of equation (1.1) is called shape invariant if the condition

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1), (2.1)

is satisfied [17]. In this equation a1 and a2 represent the parameters of the Hamiltonian. The
parameter a2 is a function of a1 and the remainder R(a1) is independent of the dynamical
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variables such as position and momentum. As it is written the condition of equation (2.1)
does not require the Hamiltonian to be one dimensional, and one does not need to choose the
ansatz of equation (1.2). In the cases studied so far the parameters a1 and a2 are either related
by a translation [19, 23] or a scaling [13, 14, 24]. Introducing the similarity transformation
that replaces a1 with a2 in a given operator T̂ (a1)Ô(a1)T̂

†(a1) = Ô(a2) and the operators
B̂+ = Â†(a1)T̂ (a1) and B̂− = B̂

†
+ = T̂ †(a1)Â(a1), the Hamiltonians of equation (1.1) take the

forms Ĥ ≡ Ĥ 1 = h̄�B̂+B̂− and Ĥ 2 = h̄�T̂ B̂−B̂+T̂
†. As shown in [19], with equation (2.1)

one can also easily prove the commutation relation [B̂−, B̂+] = T̂ †(a1)R(a1)T̂ (a1) ≡ R(a0),

where we used the identity R(an) = T̂ (a1)R(an−1)T̂
†
(a1), valid for any n ∈ Z. This

commutation relation suggests that B̂− and B̂+ are the appropriate creation and annihilation
operators for the spectra of the shape-invariant potentials provided that their non-commutativity
with R(a1) is taken into account. The additional relations

R(an)B̂+ = B̂+R(an−1) and R(an)B̂− = B̂−R(an+1), (2.2)

readily follow from these results. Considering that the ground state of the Hamiltonian Ĥ

satisfies the condition

Â|�0〉 = 0 = B̂−|�0〉, (2.3)

using the relations above it is possible to find the nth excited state of Ĥ

Ĥ |�n〉 ≡ h̄�(B̂+B̂−)|�n〉 = h̄�en|�n〉 and B̂−B̂+|�n〉 = {en + R(a0)}|�n〉.
(2.4)

where these eigenstates can be written in a normalized form as

|�n〉 = 1√
R(a1) + R(a2) + · · · + R(an)

B̂+ · · · 1√
R(a1) + R(a2)

B̂+
1√

R(a1)
B̂+|�0〉 (2.5)

with the eigenvalues En = h̄�en, being

en =
n∑

k=1

R(ak). (2.6)

As mentioned in the introduction, a possible way to define a coherent state is to
find a quantum state annihilated by the lowering operator. Annihilation-operator coherent
states for shape-invariant potentials were introduced in [10, 13]. Here we follow the
notation of [13]. Our first step is to introduce the necessary tools to be used in this
construction. After we obtain the coherent state we must verify if this state satisfies the
set of four essential requirements, introduced and discussed in [21], necessary for a close
connection between classical and quantum formulations of a given system: (a) label continuity,
(b) overcompleteness or resolution of unity, (c) temporal stability and (d) action identity.
Indeed the first two requirements are standard and rely on the algebraic structure behind the
system in question, while the last two are more general and relate to the classical-quantum
connection question.

2.1. Construction

To remove the energy scale we rewrite the shape-invariant Hamiltonian as

Ĥ = h̄�Ĥ, with Ĥ = B̂+B̂−. (2.7)

The operator B̂− does not have a left inverse in the Hilbert space of the eigenstates of the
Hamiltonian Ĥ . However, a right inverse for B̂− (B̂−B̂−1

− = 1̂) can be defined. Similarly
the inverse of Ĥ does not exist, but Ĥ−1B̂+ = B̂−1

− does. Therefore, if we define the
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Hermitian conjugate operators Q̂ = B̂−Ĥ−1/2 and Q̂† = Ĥ−1/2B̂+, we can easily show that
B̂−1

− = Ĥ−1/2Q̂† and the normalized form of the nth excited state of Ĥ , given by (2.5), can be
rewritten as |�n〉 = (Q̂†)n|�0〉. Then, taking into account equations (2.4) and (2.6) and these
last two relations, we can prove that

B̂−n
− |�0〉 = Cn|�n〉, where

Cn =
{

n−1∏
k=0

(en − ek)

}−1/2

=
{

n∏
k=1

[
n∑

s=k

R(as)

]}−1/2

, (2.8)

since e0 = 0. After these preliminary considerations we are ready to define our generalized
expression for the coherent state of shape-invariant systems as

|z; aj 〉 =
∞∑

n=0

{zZj B̂
−1
− }n|�0〉, z,Zj ∈ C, (2.9)

where we used the shorthand notation Zj ≡ Z(aj ) ≡ Z(a1, a2, a3, . . .) for an arbitrary
functional of the potential parameters, introduced to establish a more general approach. As
one will see in the applications below, for harmonic oscillator system, the presence of the
functional Zj introduces only a constant scale factor in the complex expansion variable z that
can be absorbed by a redefinition of this constant and, thus, we get back to the standard results
for this system. Formally the definition (2.9) can be expressed as

|z; aj 〉 =
[

1

1 − zZj B̂
−1
−

]
|�0〉. (2.10)

Using relation (2.2) we can prove that this coherent state is an eigenstate of the operator B̂−
since

B̂−|z; aj 〉 = zZj−1|z; aj 〉. (2.11)

This state also satisfies the additional condition

{B̂− − zZj−1} ∂

∂z
|z; aj 〉 = Zj−1|z; aj 〉, (2.12)

where Zj−1 = T̂ †(a1)Zj T̂ (a1). An important observation is that the coherent state definition
(2.9) satisfies the continuity of labelling requirements since the transformation of the variables
(z, aj ) → (z′, aj ′) leads to the transformation of the states |z; aj 〉 → |z′; aj ′ 〉. This is the
first standard property required for coherent states. The other three we take up in the next
subsections. Together with the resolution of unity, the continuity of labelling represents the
minimal condition to be satisfied for a set of coherent states to be represented by a Lie algebraic
group.

2.2. Normalization

At this stage we can use the action of the B̂−1
− operator on the Hilbert space of the eigenstates

{|�n〉, n = 0, 1, 2, . . .} and (2.2) to get the generalized Glauber’s form [25] of the coherent
state |z; aj 〉 based in its expansion in the eigenstates of the Hamiltonian Ĥ :

|z; ar〉 = N (|z|2; ar)

∞∑
n=0

zn

hn(ar)
|�n〉, (2.13)
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where we used the shorthand notation (ar) ≡ [R(a1), R(a2), . . . , R(an); aj , aj+1, . . . , aj+n−1]
for the expansion coefficients, which are given by h0(ar) = 1 and

hn(ar) =
√√√√ n∏

k=1

[
n∑

s=k

R(as)

]/
n−1∏
k=0

Zj+k, for n � 1 (2.14)

with Zj+k = {T̂ (a1)}kZj {T̂ †(a1)}k, as well as for the real normalization factor

N (x; ar) = 1

/√√√√ ∞∑
n=0

xn

|hn(ar)|2 . (2.15)

At this point we observe that the transformation properties between the potential parameters
an, imposed by shape invariance, constrain the freedom to define Zj . Besides that, when we
consider relation (2.14), this potential parameter dependence in Zj shows strong influence
in the final expression of the expansion coefficient hn(ar). Another thing to observe about
Zj is its importance in the determination of the radius of convergence in the series defining
N (|z|2; ar) since this radius is given by R = lim supn→+∞

n
√

|hn(ar)|2.
It should be noted that this normalized coherent state has a B̂− operator eigenvalue

different from the unnormalized one since the potential parameters in the normalization
factor are changed by the action of that operator. Indeed we can prove that in this case,
equation (2.11) must assume the form

B̂−|z; aj 〉 = zZj−1

[
N (ar−1; |z|2)
N (ar; |z|2)

]
|z; aj 〉, (2.16)

where N (ar−1; |z|2) = T̂ †(a1)N (ar; |z|2)T̂ (a1). Although they are normalized, the coherent
states |z; ar〉 are not orthogonal to each other since

〈z′; ar |z; ar〉 = N (ar; |z′|2)N (ar; |z|2)
N 2(ar; zz′∗)

. (2.17)

So we conclude that they form an over-complete linearly dependent set.

2.3. Overcompleteness

Now we can investigate the overcompleteness or resolution of unity property of the generalized
coherent states introduced by equation (2.9). To this end we assume the existence of a positive-
definite weight function w(|z|2; ar) so that an integral over the complex plane exists and gives
the result ∫

C

d2z|z; ar〉〈z; ar |w(|z|2; ar) = 1̂1H, (2.18)

where 1̂1H is the identity operator in the Hilbert space of the Ĥ -eigenstates. Inserting
equation (2.13) into equation (2.18) the resolution of unity can be expressed by∫

C

d2zN 2(|z|2; ar)

∞∑
m,n=0

z∗mzn

h∗
m(ar)hn(ar)

|�n〉〈�m|w(|z|2; ar) = 1̂1H. (2.19)

At this point we can use the orthonormality of the eigenstates |�n〉 to show that the diagonal
matrix elements of equation (2.19) can be written as∫

C

d2zN 2(|z|2; ar)(z
∗z)nw(|z|2; ar) = |hn(ar)|2. (2.20)
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Therefore, assuming the polar coordinate representation z ≡ r eiφ of complex numbers we
must have d2z = r dr dφ and using the result

1

2π

∫ 2π

0
dφ ei(n−m)φ = δn,m, (2.21)

we conclude that to get a resolution of unity we must require∫ ∞

0
dρ ρnW(ρ; ar) = |hn(ar)|2, where W(ρ; ar) = πN 2(ρ; ar)w(ρ; ar),

(2.22)

and ρ stands for r2. In other words, equation (2.22) provides the set of moments {ρn} of the
distribution function W(ρ; ar), since we assume all moments exist and have finite values.
Therefore, as pointed out in [26], the problem of finding a suitable measure w(ρ; ar) reduces
to a moment distribution problem. After this point there are several possible ways to get the
measure w(ρ; ar). We can choose a possible form of w(ρ; ar) by using the result of a known
integral. Another possibility is to use a transformation procedure, like Mellin [27] or Fourier,
to determine the form of the measure w(ρ; ar). For example, in the Fourier transformation
case we can multiply equation (2.22) by the sum factor

∑∞
n=0(iξ)n/n! and use the series

expansion of the exponential function to obtain∫ ∞

0
dρ W(ρ; ar) eiρξ = 
(ξ ; ar) =

∞∑
n=0

|hn(ar)|2(iξ)n/n!. (2.23)

Thus, taking the inverse Fourier transformation of equation (2.23) we can show that

W(ρ; ar) = 1

2π

∫ ∞

−∞
dξ 
(ξ ; ar) e−iρξ . (2.24)

In the applications of the next section we will use several different procedures to get the
resolution of unity. To conclude this part, we note that explicit computation of the weight
function w(|z|2; ar) requires the knowledge of the spectrum of the quantum mechanical system
under consideration and the form of the functional Zj .

2.4. Temporal stability

Let us now investigate the dynamical evolution of the generalized coherent state (2.13). To
do that we must remember that the time evolution of this generalized coherent state can be
obtained by

|z; ar〉t
= Û (t, 0)|z; ar〉o

(2.25)

where the time evolution operator fulfils the differential equation

ih̄
∂Û(t, 0)

∂t
= Ĥ Û(t, 0), (2.26)

with the initial condition Û (0, 0) = 1̂1H. Thus,

|z; ar〉t
= exp(−iĤ t/h̄)|z; ar〉o

. (2.27)

At this point if we consider expansion (2.13), the results of equations (2.4) and the commutation
between any function of the potential parameters a and the Hamiltonian Ĥ in equation (2.27)
we obtain

|z; ar〉t
= N (|z|2; ar)

∞∑
n=0

zn

hn(ar)
e−i�ent |�n〉. (2.28)
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To establish the temporal stability of this coherent state we utilize the freedom in the choice of
the functional Z(aj ) to redefine it as Z̄(aj ) = Z(aj ) e−iαR(a1) where α is a real constant. This
redefinition implies h̄n(ar) = hn(ar) eiαen , where en is given by (2.6) and hn(ar) still given by
equation (2.14). Therefore we can write the coherent state |z; ar〉 as

|z; ar〉 
⇒ |z, α; ar〉 = N (|z|2; ar)

∞∑
n=0

zn

hn(ar)
e−iαen |�n〉, (2.29)

and its time-evolved form as

|z, α; ar〉t
= N (|z|2; ar)

∞∑
n=0

zn

hn(ar)
e−i(α+�t)en |�n〉 ≡ |z, α + �t; ar〉, (2.30)

illustrating the fact that the time evolution of any such generalized coherent state remains
within the family of generalized coherent states. In other words, the generalized coherent
states |z, α; ar〉 show temporal stability under Ĥ . To conclude this part, note that the polar
coordinates representation of the redefined complex functional Z̄(aj ) implies that in the
coherent state time evolution its real modulus remains constant while its complex phase
increases linearly. These properties are similar to the classical behaviour of canonical action-
angle variables.

2.5. Action identity

The last property to be satisfied for the coherent state |z; ar〉 is the action identity. To verify
this identity we take the conjugate of equation (2.11) and use the definition of the operator B̂+

to get

〈z; ar |B̂+ = 〈z; ar |z∗Z∗
j−1. (2.31)

Now with this result, equation (2.11) and the expression of the Hamiltonian Ĥ we can calculate
the expectation value

〈Ĥ 〉 = 〈z; ar |Ĥ |z; ar〉
〈z; ar |z; ar〉 = h̄�

〈z; ar |B̂+B̂−|z; ar〉
〈z; ar |z; ar〉 = h̄�|zZj−1|2. (2.32)

Using this result we can define a canonical action variable J = h̄β∗
j βj , with βj = zZj−1,

such as 〈Ĥ 〉 = νJ, so that ν̇ = ∂〈Ĥ 〉/∂J = � 
⇒ ν = �t + α, as required for a couple
of canonical conjugate action-angle variables. Note that the normalized form (2.13) of the
coherent state |z; ar〉 requires the definition βj = zZj−1N (|z|2; ar−1)/N (|z|2; ar).

With these properties we showed that the generalized coherent state |z; ar〉 satisfies the
set of basic requirements we enumerated.

3. Some examples of generalized coherent state systems

Using the definition presented in the previous section we now illustrate the concept of
generalized coherent states for shape-invariant systems using some known shape-invariant
potential systems. As in [10], for these applications we follow the classification based on the
factorization method introduced by Infeld and Hull [22] in which six possibles types of shape-
invariant systems are grouped when their potential parameters are related by a translation.
We also study the case of the self-similar potential system as an example of shape-invariant
potential with potential parameters related by scaling.
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3.1. Types (C) and (D) shape-invariant systems

We begin with these systems because they are the simplest cases among the shape-invariant
potential systems. The partner potentials V±(x) for these systems are obtained with the
superpotentials

WC(x, a1) =
√

h̄�

(
a1 + δ

x
+

β

2
x

)
, and WD(x, a1) =

√
h̄�(βx + δ), (3.1)

where β and δ are real constants, while the remainders in the shape-invariant condition (2.1)
are given by [16]

RC(an) = β

(
an − an+1 +

√
h̄

2m�

)
, and RD(an) =

√
h̄

2m�
(an + an+1). (3.2)

Taking into account that the parameters for these potentials are related by{
an+1 = an − √

h̄/(2m�), for (C),
(∀n ∈ Z),

a1 = a2 = · · · = an = β, for (D),
(3.3)

we conclude that for both shape-invariant systems the remainders (3.2) can be written as
R(an) = γ, with γ = √

2h̄/(m�)β, and thus
n∏

k=1

[
n∑

s=k

R(as)

]
=

n∏
k=1

[γ (n − k + 1)] = γ nn!. (3.4)

On the other hand, the constant values of the potential parameters for (D) shape-invariant
potential imply that for these systems we must have Zj = c, a constant. Using this and
equation (2.14) we obtain

n−1∏
k=0

Zj+k = cn 
⇒ hn(ar) =
√

γ nn!

cn
. (3.5)

Taking this into account in equations (2.15) and (2.13) we find

N (|z|2; ar) = exp

(
−c2|z|2

2γ

)
, and |z; ar〉 = e−(c|z|/√2γ )2

∞∑
n=0

(cz/
√

γ )n√
n!

|�n〉.

(3.6)

With these results we can show that the inner product (2.17) of two coherent states can be
readily found as

〈z′; ar |z; ar〉 = exp

[
− c2

2γ
(|z′|2 + |z|2 − 2zz′∗)

]
. (3.7)

The overcompleteness property can be verified by using equation (2.23). The function


(ξ ; ar) =
∞∑

n=0

(
iγ ξ

c2

)n

= 1

1 − iγ ξ/c2
, (3.8)

which has a pole at ξ = −ic2/γ and its integration in equation (2.24) by using the lower-half
complex plane enclosing this pole yields

W(ρ; ar) = 1

2π

∫ ∞

−∞
dξ

e−iρξ

1 − iγ ξ/c2
= e−c2ρ/γ . (3.9)

Now, taking into account the result for N (ρ; ar) and the relation between the function
W(ρ; ar) and the weight function, it is possible to show that w(ρ; ar) = 1/π. The example
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of a (D) shape-invariant system is the harmonic oscillator potential V−(x, a1), obtained with
equation (1.3) and WD(x, a1). In this case it should be noted that if we redefine the complex
constant by z −→ cz/

√
γ , and take into account that |�n〉 → |n〉 is an element of the Fock

space {|n〉, n � 0} , we obtain for the coherent state and its inner product

|z; ar〉 = e−|z|2/2
∞∑

n=0

zn

√
n!

|n〉, 〈z′; ar |z; ar〉 = exp

[
−1

2
(|z′|2 + |z|2 − 2zz′∗)

]
, (3.10)

which are the usual expressions for bosonic coherent states [3]. In this case we observe that
the simplicity of the harmonic oscillator system does not permit any special modification in
the standard result with the definition of the generalized coherent state (2.13).

For (C) shape-invariant systems, if we make the choice Zj = c (a constant) and following
the steps above it is possible to obtain identical results as (D) shape-invariant systems for the
coherent state. However, any other choice would imply different results. Just as an example,
let us define the following auxiliary function,

g(aj ; c, d) = caj + d, (3.11)

where c and d are constants. With the help of equation (3.3) we can show that

n−1∏
k=0

g(aj+k; c, d) = (−cη)n�[n + j − ρ − d/(cη) − 1]

�[j − ρ − d/(cη) − 1]
= (cη)n�[ρ + d/(cη) − j + 2]

�[ρ + d/(cη) − n − j + 2]
,

(3.12)

where η = √
h̄/(2m�) and ρ = a1/η. Taking into account this result and defining the

functional Zj as

Zj =
√

g(a1;−γ /η, 1) e−iαR(a1) (3.13)

we get

n−1∏
k=0

Zj+k =
√

γ n�(n − ρ)

�(−ρ)
e−iαγn, (3.14)

where we used that en = nγ. Substituting equations (3.4) and (3.14) in (2.14) we obtain

hn(ar) =
√

�(−ρ)�(n + 1)

�(n − ρ)
eiαγn, (3.15)

and we can show that the normalization factor (2.15) in this case is given by

N (|z|2; ar) =
[

1

�(−ρ)

∞∑
n=0

�(n − ρ)

�(n + 1)
|z|2n

]−1/2

= (1 − |z|2)−ρ/2, (3.16)

with the restriction |z| < 1. Thus, the coherent state (2.13) obtained with these results is

|z; ar〉 = (1 − |z|2)−ρ

∞∑
n=0

√
�(n − ρ)

�(−ρ)�(n + 1)
e−iαγnzn|�n〉, (3.17)

where we take a1 < 0 implying ρ < 0. As it is always possible to get a1 + δ > 0 with an
adequate choice of δ, there are no problems with this assumption. In this case the inner product
(2.17) of two coherent states will be

〈z′; ar |z; ar〉 =
[√

(1 − |z|2)(1 − |z′|2)
(1 − z′∗z)

]−ρ

. (3.18)
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The completeness can be obtained by using the measure w(|z|2; ar) = −(ρ +1)(1−|z|2)−2/π,

that is invariant on the disc |z| < 1. Example of a shape-invariant type (C) system [28]
is the double anharmonic potential V−(x, a1), obtained with equation (1.3) and using the
superpotential WC(x, a1).

The coherent state we obtained for the (C)-type shape-invariant system, equation (3.17),
is the Perelomov coherent state [7] for the group SU(1, 1). This is not surprising since
the SU(1, 1) algebra is both the shape-invariance and spectrum-generating algebra of this
shape-invariant system. The appropriate realization of this algebra is

K̂0 = 1

4

(
p̂2 + x2 +

α

x2

)
and K̂± = 1

4

(
p̂2 − x2 +

α

x2

)
± i

4
(p̂x + xp̂) . (3.19)

For the (C)-type shape-invariant systems the shape invariance [19] connects eigenstates
of the same system.

3.2. Types (A) and (B) shape-invariant systems

The partner potentials V±(x) for these systems are obtained with the superpotentials

WA(x, a1) =
√

h̄�{β(a1 + γ ) cot[β(x + λ)] + δ csc[β(x + λ)]} (3.20)

WB(x, a1) =
√

h̄�[β(a1 + γ ) + δ exp(−βx)], (3.21)

β, γ, δ and λ being real constants. For these systems the remainders in the shape-invariant
condition (2.1) are given by R(a1) = ±β2η[2(a1 + γ ) ± η], with the potential parameters
related by an+1 = an ± η, where η = √

h̄/(2m�) and the signs (+) and (−) stand for (A) and
(B) types, respectively. Using these results we can prove that for (A)-type systems one has

n∏
k=1

[
n∑

s=k

R(as)

]
= κ2n�(n + 1)�(2ρ + 2n)

�(2ρ + n)
, (3.22)

with κ = ηβ and ρ = (a1 + γ )/η. To investigate the consequences of our general approach
for this type of system let us consider some possibilities. First, if we make the choice Zj = c

(a constant) and use the result of equations (3.5) and (3.22) we find

hn(ar) =
√

�(n + 1)�(2ρ + 2n)

�(2ρ + n)
(3.23)

and

N (|z|2; ar) =
[ ∞∑

n=0

�(2ρ + n)

�(n + 1)�(2ρ + 2n)
|z|2n

]−1/2

(3.24)

for the expansion coefficient and the normalization factor, respectively, after assuming c = κ.

At this point, if we choose ρ = 1/2 we get the simple expression found in [10] for the coherent
state (2.13) because in this case hn(ar) = √

(2n)!, and since by equation (2.15)

N (|z|2; ar)
−1 =

√√√√ ∞∑
n=0

|z|2n

(2n)!
= 1√

sech(|z|) , and

|z; ar〉 =
√

sech(|z|)
∞∑

n=0

zn

√
(2n)!

|�n〉. (3.25)

As shown in [10], in this case the identity resolution is obtained with the measure
w(|z|2; ar) = e−|z|/(2|z|).
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Another interesting possibility is to use the auxiliary function (3.11). In this case, because
of the translation relation between the an potential parameters, we can prove that for type (A)
systems one gets

n−1∏
k=0

g(aj+k; c, d) = (cη)n�
[

ν
2 + j + n + d

/
(cη) − 1

]
�

[
ν
2 + j + d

/
(cη) − 1

] , (3.26)

where ν = 2a1/η. If we define the functional Zj = √
g(a1; 2κ/η, κ)g(a1; 2κ/η, 2κ) e−iαR(a1),

we obtain
n−1∏
k=0

Zj+k =
√

(2κ)2n�
(

ν
2 + n + 1

)
�

(
ν
2 + n + 1

2

)
�

(
ν
2 + 1

)
�

(
ν
2 + 1

2

) e−iαen =
√

κ2n�(ν + 2n + 1)

�(ν + 1)
e−iαen , (3.27)

where en = κ2n(n + 2ρ). Assuming γ = η/2 and using equations (3.22) and (3.27) in (2.14)
we obtain

hn(ar) =
√

�(ν + 1)�(n + 1)

�(ν + n + 1)
eiαen , (3.28)

and we can show that the normalization factor (2.15) in this case is given by

N (|z|2; ar) =
[

1

�(ν + 1)

∞∑
n=0

�(ν + n + 1)

�(n + 1)
|z|2n

]−1/2

= (1 − |z|2)(ν+1)/2, (3.29)

with the restriction |z| < 1. The coherent state (2.13) obtained with these results is

|z; ar〉 = (1 − |z|2)(ν+1)/2
∞∑

n=0

√
�(ν + n + 1)

�(ν + 1)�(n + 1)
e−iαenzn|�n〉. (3.30)

Comparing with [29] one notes that equation (3.30) is a form for the coherent state of the
Pöschl–Teller potential of first type [30]. This potential V−(x, a1), obtained with equation (1.3)
and using the superpotential WA(x, a1), is the example of a shape-invariant system
type (A). As shown in [29], in this case, the resolution of unity is obtained with the measure
w(|z|2; ar) = ν(1 − |z|2)−2/π.

Finally, note that if one takes

Zj =
√

g(a1; 2/η, 1)g(a1; 2/η, 2)

g[a1; 1/(κη), (1 + ν/2)/κ]
e−iαR(a1), (3.31)

and follows the same way used before one gets a second possible form for the coherent state
of the Pöschl–Teller potential [29, 31]

|z; ar〉 = |z|ν/2

√
Iν(2|z|)

∞∑
n=0

e−iαenzn

√
�(n + 1)�(ν + n + 1)

|�n〉, (3.32)

where Iν(x) is the modified Bessel function of the first kind. As shown in [29, 31], in this
case the resolution of unity is given by the measure

w(|z|2; ar) = 2

π
Kν(2|z|2), with Kν(x) = π [I−ν(x) − Iν(x)]

2 sin(πν)
, ν ∈ Z. (3.33)

Note that the coherent state in equation (3.32) is the Barut–Girardello coherent state for
the SU(1, 1) algebra [6]. This is not surprising since SU(1, 1) is the shape-invariance algebra
for the Pöschl–Teller potential as shown in [19]. Note that in this case the shape-invariant
potential relates a series of potentials with different depths, not the quantum states of the given
potential, i.e. the shape-invariance algebra is not the spectrum-generating algebra in contrast
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to the (C)- and (D)-type shape-invariant systems. Hence the coherent state corresponds to a
non-compact algebra with infinite number of states representing all possible potentials with
different depths.

As a last example we obtain a new coherent state for this kind of system with the
introduction of the functional

Zj =
√

g(a1;β, βγ )g(a1;β, βγ + κ/2)g(a3; 2/η,−ν − 2σ)

g(a1; 1/η, ρ + γ /η)g(a3; 1/η,−ν/2)
e−iαR(a1), (3.34)

which leads to
n−1∏
k=0

Zj+k =
√

κ2n�(2n + 2ρ)�(n + 2 − σ)

�(2 − σ)�(n + 2ρ)�(n + 2)
e−iαen . (3.35)

Therefore using equations (3.22) and (3.35) in (2.14) we obtain

hn(ar) =
√

�(2 − σ)�(n + 1)�(n + 2)

�(n + 2 − σ)
eiαen , (3.36)

and we can show that the normalization factor (2.15) in this case is given by

N (|z|2; ar) =
[

1

�(2 − σ)

∞∑
n=0

�(n + 2 − σ)

�(n + 2)

|z|2n

n!

]−1/2

= 1√

(2 − σ ; 2; |z|2)

, (3.37)

where 
(a; b; x) = 1F1(a; b; x) is the degenerate hypergeometric function [32]. The coherent
state of equation (2.13) obtained with these results is

|z; ar〉 = 1√
�(2 − σ)
(2 − σ ; 2; |z|2)

∞∑
n=0

√
�(n + 2 − σ)

�(n + 2)�(n + 1)
e−iαenzn|�n〉. (3.38)

With the help of the integral [33]∫ ∞

0
tλ−1 e−t/2Wσ,µ(t) dt = �

(
λ − µ − 1

2

)
�

(
λ + µ − 1

2

)
�(λ − σ + 1)

, (3.39)

it is possible to show that the resolution of the unity can be obtained with the measure

w(|z|2; ar) = �(2 − σ)

π
e−(|z|2/2)
(2 − σ ; 2; |z|2)Wσ,1/2(|z|2), (3.40)

where Wσ,µ(x) is the Whittaker function [32, 33].
One example of the shape-invariant systems of type (B) is the Morse potential [34]. This

potential has a finite number of normalizable bound states which cannot form a complete set
of states in the Hilbert space, the condition necessary to construct the coherent state using our
generalized approach. We nevertheless observe that since the superpotential WB(x, a1) has a
special form (x-independent and linear in a1-term) it is possible to construct coherent states
for Morse potential systems using other sets of eigenstates that form a complete orthonormal
basis in Hilbert space, and examples of these procedures can be found in [35, 36].

On the other hand, the shape-invariant systems classified as types (E) and (F) have
superpotentials given by

WE(x, a1)=
√

h̄�

(
βa1 cot[β(x + λ)] +

δ

a1

)
and WF(x, a1)=

√
h̄�

(
a1

x
+

δ

a1

)
,

(3.41)

where β, δ and λ are real constants. The systems classified as type (E) only have bound
states while the system type (F) have continuous as well as bound states. Like the systems of
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type (B), the (E) systems have a finite number of energy eigenstates. In this case, an alternative
way is to construct the coherent state using the finite set of energy eigenstates with an adequate
redefinition of the measure w(|z|2; ar) to get a finite number of moments {ρn}, as was done in
[37] for the Morse potential. The system of type (F), i.e. the Coulomb potential, because
of its three-dimensional character, presents energy-degenerated eigenstates. In this case
expansion (2.10) defined for our generalized coherent state must be appropriately adjusted for
this situation. Our generalized definition (2.9) of coherent states for shape-invariant systems
can be extended to include these alternative approaches for systems of types (B), (E) and (F).
More details and further developments on this subject will be published elsewhere.

3.3. Self-similar potential systems

All previous examples have partner potentials V±(x) with parameters related by a translation.
One class of shape-invariant potentials is given by an infinite chain of reflectionless potentials
V

(k)
± (x) (k = 0, 1, 2, . . .), for which associated superpotentials Wk(x) satisfy the self-similar

ansatz Wk(x) = qkW(qkx), with 0 < q < 1. These sets of partner potentials V
(k)
± (x), also

called self-similar potentials [38, 39], have an infinite number of bound states and parameters
related by a scaling: an = qn−1a1. Shape invariance of self-similar potentials was studied in
detail in [40, 41]. In the simplest case studied by them the remainder of equation (2.1) is given
by R(a1) = ca1, where c is a constant. Hence

n∏
k=1

[
n∑

s=k

R(as)

]
=

[
R(a1)

1 − q

]n

qn(n−1)/2(q; q)n (3.42)

where the q-shifted factorial (q; q)n is defined as (p; q)0 = 1 and (p; q)n = ∏n−1
j=0(1 − pqj ),

with n ∈ Z. Coherent states for self-similar potentials were introduced in [10, 13, 14]. Before
applying our generalized approach for this system let us first assume the choice Zj = 1 and
use it and the result of equations (3.42) in the expansion coefficient (2.14) to show that the
coherent state (2.13) in this case is given by

|z; ar〉 = 1√
E

(−1/2)
q (|ξ0|2)

∞∑
n=0

q−n2/4

√
(q; q)n

ξn
0 |�n〉. (3.43)

where ξ0 = z
√

(1 − q)/[
√

qR(a1)] and the q-exponential is defined by [42–44]

E(µ)
q (x) =

∞∑
n=0

qµn2

(q; q)n
xn. (3.44)

The result (3.43) is the normalized form of the initial expression we obtained in our previous
paper [13] for the coherent states of the self-similar potentials. To apply our generalized
approach for this kind of potential system we assume

Zj = R(a1) e−iαR(a1) yielding
n−1∏
k=0

Zj+k = [R(a1)]
nqn(n−1)/2 e−iαen , (3.45)

where en = R(a1)(1 − qn)/(1 − q). Substituting equations (3.42) and (3.45) in (2.14) we find

hn(ar) =
√

(q; q)n

[R(a1)(1 − q)]nqn(n−1)/2
eiαen , and N (|z|2; ar) = 1√

E
(1/2)
q (|ξ1|2)

,

(3.46)
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where ξ1 = z
√

R(a1)(1 − q)/
√

q. The coherent state (2.13) obtained with these results is

|z; ar〉 = 1√
E

(1/2)
q (|ξ1|2)

∞∑
n=0

qn2/4

√
(q; q)n

e−iαenξn
1 |�n〉. (3.47)

In this case we can show that the inner product (2.17) of two coherent states can be readily
found as

〈z′; ar |z; ar〉 = E
(1/2)
q (ξ ′∗

1 ξ1)√
E

(1/2)
q (|ξ ′

1|2)E(1/2)
q (|ξ1|2)

. (3.48)

This result is still valid for the first expression obtained for the coherent state of self-similar
potentials (3.43) since we change ξ1 → ξ0 and E

(1/2)
q (x) → E

(−1/2)
q (x). Equation (3.47) is the

temporally stable version of the coherent state found in our previous paper [14] (see also [45]).
As shown in that paper, this choice for Zj makes it possible to establish an overcompleteness
relation for the coherent state |z; ar〉 using Ramanujan’s integral extension of the beta function
[46] and the measure, in this case, is given by

w(|z|2; ar) = 1

2π(−|ξ1|2; q)∞ log(1/q)
. (3.49)

Finally, we introduce a possible new coherent state for this class of shape-invariant
potentials by using the functional definition

Zj = R(a1)
√

1 − c/a2 e−iαR(a1) 
⇒
n−1∏
k=0

Zj+k = [R(a1)]
nqn(n−1)/2

√
(c; q−1)n+1

1 − c
e−iαen , (3.50)

where c is an arbitrary constant. Substituting equations (3.42) and (3.50) in (2.14) we find

hn(ar) =
√

(1 − c)(q; q)n

[R(a1)(1 − q)]nqn(n−1)/2(c; q−1)n+1
eiαen , and

N (|z|2; ar) =
√

(−c|ξ2|2q−1; q)∞
(−|ξ2|2; q)∞

, (3.51)

where ξ2 = z
√

R(a1)(1 − q). The coherent state (2.13) obtained with these results is

|z; ar〉 =
√

(−c|ξ2|2q−1; q)∞
(1 − c)(−|ξ2|2; q)∞

∞∑
n=0

qn(n−1)/4

√
(c; q−1)n+1

(q; q)n
e−iαenξn

2 |�n〉. (3.52)

In this case it is possible to establish an overcompleteness relation for the coherent state |z; ar〉
with the introduction of the measure

w(|ξ2|2; ar) = R(a1)(1 − q)(1 − c)

πq log (1/q)

[
(−|ξ2|2; q)∞

(−|ξ2|2q−1; q)∞

]
, (3.53)

and using the Ramanujan integral given by [46]∫ ∞

0
t k−1 (−at; q)∞

(−t; q)∞
dt = log(1/q)(q; q)k−1

qk(k−1)/2(a; q−1)k
. (3.54)

(An elementary proof of (3.54) was given by Askey [47].) Note that it is straightforward to
show that the results for this last example reduce to the previous one when we take the limit
c → 0 and consider the properties of the (a; q)∞ functions and the relations between the ξ1
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and ξ2 complex variables. Indeed the Ramanujan integral and its integral extension of the beta
function [46] used in the previous example is a particular case of the more general Ramanujan
integral (3.54).

4. Concluding remarks

In this paper, using an algebraic approach, we constructed generalized coherent states for
shape-invariant systems. This generalization based on the introduction of a factor functional
Zj of the potential parameters in the coherent state (a) satisfies the set of essential requirements
we enumerated in the introduction to establish classical and quantum correspondence, (b)
reproduces results already known for shape-invariant potential systems and (c) gives new
possible expressions for coherent states. Another aspect to emphasize is that our generalized
construction of coherent states gives some insight into the question of relating different sets
of coherent states found in the literature for such systems.
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